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Abstract

The explanation of the Stark effect in hydrogen, the 
splitting of the Balmer lines in an external electric field, 
was a major success of the old quantum theory of Bohr 
and Sommerfeld. Borrowing techniques from celestial 
mechanics, Epstein and Schwarzschild found frequen­
cies for the Stark effect components of these lines that 
were in excellent agreement with Stark’s experimental 
data. Using Bohr’s correspondence principle, Kramers 
found the correct polarizations for these components 
and intensities that agreed, at least qualitatively, with 
the data. Shortly after the arrival of wave mechanics, 
Schrödinger and Epstein treated the Stark effect on the 
basis of the new theory. The two theories agree on the 
polarizations and, at least to first order in the strength 
of the external field, on the frequencies, but not on the 
intensities, where the new theory was soon found to be 
in reasonable quantitative agreement with new and 
better data. More importantly, the new theory elimi­
nated the need for some additional assumptions that 
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had to be made in the old theory. Furthermore, al­
though this was not explicitly noted at the time, the 
new theory solved a fundamental problem in the old 
quantum theory that manifested itself glaringly in the 
Stark effect: it depends on the coordinates in which the 
quantum conditions are imposed which orbits are al­
lowed. In the new theory, this worrisome non-unique- 
ness of orbits turns into the completely innocuous non­
uniqueness of bases of eigenfunctions.

Key words: Stark effect; Bohr-Sommerfeld theory; 
Hamilton-Jacobi theory; wave mechanics; Epstein; 
Kramers; Schrödinger.

1. Introduction

In 1913, the same year that Niels Bohr proposed his model of the 
hydrogen atom and showed that it correctly reproduces the fre­
quencies of the lines of the Balmer series in the hydrogen spectrum, 
Johannes Stark published his detailed measurements of the split­
ting of these spectral lines when a hydrogen atom is placed in an 
external electric field.1 2 The Stark effect, as it quickly came to be 
called, the splitting of spectral lines by electric fields, is the electric 
analogue of the Zeeman effect, the splitting of spectral lines by 
magnetic fields, discovered by Pieter Zeeman in 1896.“ Stark re­
called that at a dinner party at Heike Kamerlingh Onnes’s house 
during a visit to Leyden shortly after he discovered the effect, the 
hostess was seated right between Zeeman and himself. This prompt­
ed a risqué joke on the part of another dinner guest, Paul Ehrenfest, 
who quipped: “Well, Mrs. Onnes, now you have a choice: do you 
want to be split electrically or magnetically?”3

1. Bohr (1913), Stark (1913a).
2. Kox (1997).
3. Hermann (1965b), p. 13.

Both splittings won their discoverers a Nobel Prize, Zeeman in 
1902, Stark in 1919. In the case of the Zeeman effect, Zeeman shared 
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the award with Hendrik Antoon Lorentz, whose electron theory 
could account for Zeeman’s original findings though not for the 
more complicated manifestations of the effect found in subsequent 
years. Stark won his Nobel Prize alone, even though the Italian ex­
perimentalist Antonino Lo Surdo could claim to have found the 
Stark effect independently.4 Three years before Stark won the Nobel 
Prize, Paul Epstein and Karl Schwarzschild showed that the effect 
could be accounted for on the basis of Arnold Sommerfeld’s exten­
sion of Bohr’s theory.5 Although Stark did not share his Nobel Prize 
with any of these theorists either, part of the significance of the 
Stark effect was undoubtedly that it supported the Bohr-Sommer- 
feld theory. Stark, however, was a staunch opponent of the theory 
and actually spent part of his Nobel lecture railing against it.6 We 
will draw the veil of charity over this sad production and focus in­
stead on Epstein and Schwarzschild.

4. See Leone, Paolette and Robotti (2004) for discussion of this case of simultaneous 
discovery. Lo Surdo only realized after he read a short note in Nature in which Stark 
(1913b) announced his discovery that he had been seeing the same effect. Lo Surdo’s 
colleague, the Italian spectroscopist Antonio Garbasso, suggested that the effect be 
called the “Stark-Lo Surdo phenomenon.” Stark vehemently opposed this suggestion 
and the name did not catch on (Leone, Paolette and Robotti, 2004, pp. 281-283).
5. Epstein (1916a,b), Schwarzschild (1916), Sommerfeld (1915a,b). For historical 
discussion, see Kragh (2012), pp. 154-156, and Eckert (2013a), sec. 4.2, pp. 44-48.
6-Kragh (2012), pp. 127-128, pp. 168-169. As is well-known, Stark later became a 
strong supporter of the Nazi movement in Germany. Lo Surdo likewise became a 
strong supporter of the fascist movement in Italy (Leone, Paolette and Robotti, 2004, 
p. 291).

Not coincidentally, as we will see, Epstein, a Polish-born Russian 
citizen who had come to Munich in 1910 and taken his doctorate 
with Sommerfeld in 1914, and Schwarzschild, director of the Astro- 
physical Observatory in Potsdam, arrived at virtually identical ac­
counts of the Stark effect at almost exactly the same time. Using 
Sommerfeld’s extension of Bohr’s theory, especially the notion of 
(as we would now call it) degeneracy that came with the introduc­
tion of multiple quantum numbers, and some powerful techniques 
from celestial mechanics, they derived the energy levels for a hydro­
gen atom in an electric field to first order in the field strength, exam- 
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ined the transitions between these energy levels, and found what 
most experts, pace Stark, considered excellent agreement with 
Stark’s spectroscopic data.

This explanation of the (first-order) Stark effect was hailed, both 
at the time and by later commentators,7 as one of the signature 
achievements of the old quantum theory of Bohr and Sommerfeld. 
As Epstein put it in the concluding paragraph of the short note in 
which he first announced his explanation of the Stark effect:

7. See, e.g., Jammer (1966), pp. 108-109, and Pais (1991), p. 183.
8. Epstein (1916a), p. 150; translation following Jammer (1966), p. 108.
9. Sommerfeld (1919).
10. Eckert (2013b).
11. Kramers (1919).
12. Sommerfeld (1919), pp. 457-458.

We believe that the reported results prove the correctness of Bohr’s 
atomic model with such striking evidence that even our conservative 
colleagues cannot deny its cogency. It seems that the potential of the 
quantum theory in its application to this model is almost miraculous 
and far from being exhausted.8

Sommerfeld went even further. By the time he published the first 
edition of Atombau und Spektrallinien,9 10 which was to become the “Bi­
ble” of the old quantum theory,“ Hendrik A. (Hans) Kramers, 
Bohr’s right-hand man in Copenhagen, had shown in his disserta­
tion that, with the help of Bohr’s correspondence principle, the 
Bohr-Sommerfeld theory could also account for the polarization 
and, at least qualitatively, the intensities of the various components 
into which an electric field splits the Balmer lines.11 12 Sommerfeld 
ended the final chapter of his book with a section on the work of 
Epstein, Schwarzschild, and Kramers on the Stark effect and 
confidently concluded that “the theory of the Zeeman effect and 
especially the theory of the Stark effect belong to the most impres­
sive achievements of our field and form a beautiful capstone on the 
edifice of atomic physics.”'Tn the next and final paragraph of the 
book, he suggested that the building of atomic physics was now es­
sentially complete and prophesized that a “proud new wing” for 
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nuclear physics, built on the same plan as the “edifice of atomic 
physics,” would soon be added.13

13. Sommerfeld (1919), p. 458. For discussion of Sommerfeld’s Munich school in theo­
retical physics, see Eckert (1993,2013c), Seth (2010), and Schweber (2012), Ch. 3.
14. Jammer (1966), p. 109.
15. Schrödinger (1926), Epstein (1926). Schrodinger’s notes and calculations for his 
paper can be found on reels 40 and 41 of the microfilms of the Archive for History of 
Quantum Physics (AH QP).
16. See Condon and Shortley (1963), pp. 400-402, for references to the experimental 
literature of the late 1920s.

Within a few years, it was recognized that Sommerfeld’s procla­
mation of success had been premature. The Zeeman effect turned 
out to be one of the most thorny problems facing the Bohr-Som- 
merfeld theory. The theory performed much better in the case of the 
Stark effect. In hindsight, it is clear that this is mainly because the 
Stark effect, unlike the Zeeman effect, does not involve spin, at least 
not in the regime of electric fields used by Stark.14 Yet, as we will 
show in this paper, the old quantum theory’s treatment of the Stark 
effect also had its share of problems, especially compared to the way 
the effect is handled in wave mechanics.

Shortly after the advent of wave mechanics and independently of 
one another, Erwin Schrödinger and Epstein, who had meanwhile 
moved from Munich to Pasadena, applied the new theory to the 
Stark effect.15 To first order in the strength of the electric field, wave 
mechanics gives the same splittings of the energy levels as the old 
quantum theory. However, whereas the old quantum theory required 
some ultimately arbitrary selection rules in addition to the basic 
quantum conditions to restrict the allowed energy levels and the al­
lowed transitions between them to eliminate some pathological or­
bits and to match the experimental data, the new theory gives the 
correct energy levels and transitions without any further assump­
tions. Wave mechanics also predicts the polarizations and intensities 
of the various components without any appeal to the correspond­
ence principle. The wave-mechanical values for the intensities 
differed from those calculated by Kramers on the basis of the 
correspondence principle and were soon found to be in satisfactory, 
if not perfect, quantitative agreement with new experimental data.16
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Schrödinger and Epstein both emphasized these two advantages 
of their new explanation of the Stark effect.17 Neither of them, how­
ever, commented on another advantage, the solution offered by 
wave mechanics of a more fundamental problem in the old quan­
tum theory’s account of the Stark effect. Both Schwarzschild and 
Epstein in 1916 and Schrödinger and Epstein in 1926 used para­
bolic coordinates to find the allowed energy levels of a hydrogen 
atom in an electric field. In the old quantum theory, one would ex­
pect that, if the electric field is set to zero, the orbits in parabolic 
coordinates reduce to those readily found in polar coordinates for 
the case without an external electric field. However, even though 
the energy levels of the orbits are the same in the two coordinate 
systems, the actual orbits are not. Both Epstein and Sommerfeld 
dutifully recorded this problem and offered a rather unrealistic sug­
gestion as to how it might be solved.18 Bohr also emphasized that 
which orbits are allowed in the old quantum theory depends on the 
coordinates in which the quantum conditions are imposed. He sug­
gested, however, that this was a virtue rather than a liability of the 
theory.19 We side with Sommerfeld and with Epstein in particular, 
who clearly recognized it as a liability. In wave mechanics, as we will 
see, the worrisome non-uniqueness of orbits turns into the com­
pletely innocuous non-uniqueness of bases of eigenfunctions in de­
generate systems. The old quantum theory’s account of the Stark 
effect thus illustrates graphically one of that theory’s most problem­

17. In the conclusion of his paper, Epstein (1926), p. 710, wrote that the agreement of 
the intensities he had calculated on the basis of wave mechanics with Stark’s data was 
“fair and decidedly better than that obtained from Bohr’s correspondence principle 
in Kramers’ work.” Both Epstein’s calculations and some of Stark’s data, however, 
turned out to be wrong (see note 98 and 129). Gordon and Minkowski (1929) showed 
that, once corrected, Epstein’s calculations give the same results as Schrodinger’s. 
These results agreed with the measurements of Foster and Chalk (1926,1928), which 
deviated from the intensities reported by Stark, especially in the case of the first two 
lines of the Balmer series, Ha and Hp.
18. Epstein (1916b), p. 507; Sommerfeld (1919), pp. 502-503.
19. Bohr (1918), pp. 20-23.
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atic features, a feature eliminated in the transition to modern quan­
tum mechanics, namely the notion that electrons and other particles 
have well-defined trajectories.

2. The Stark effect in the old quantum theory

Shortly after the discovery of the Zeeman effect, the Göttingen the­
oretical physicist Woldemar Voigt started to look into the theoreti­
cal possibility of an electric analogue of the effect.80 From 1900 to 
1906, Stark worked in Göttingen, in the same institute as Voigt. 
During those years he began a series of experiments to measure the 
effect of an external electric field on the spectra of (mainly) hydro­
gen and helium. His efforts finally bore fruit in 1913 in Aachen, 
where he had been appointed professor at the Technische Hochschule in 
1909. Stark found that spectral lines emitted by hydrogen and heli­
um split into a number of lines when an electric field is applied. In 
a series of papers published in 1914, Stark (and his co-authors 
Georg Wendt and Heinrich Kirschbaum) presented more detailed 
measurements of the effect in hydrogen, helium, and other ele­
ments.81 Like the magnetic field in the case of the Zeeman effect, the 
electric field typically turned spectral lines into multiplets with 
more than three components. Voigt’s theory, like Lorentz’s classical 
theory for the “normal” Zeeman effect, could only account for a 
splitting into three components. Moreover, unlike Lorentz’s theory, 
Voigt’s theory gave the wrong values for the frequencies of these 
components. So did a classical theory by Schwarzschild88 based on 
an analogy that he would put to better use two years later between 
the perturbation of an electron orbit by an electric field and the 
perturbation of a planetary orbit by a large but distant mass.83 Early 
attempts to account for the Stark effect in hydrogen on the basis of 
Bohr’s new quantum model of the hydrogen atom, by Emil War-

20. Hermann (1965a), Leone, Paolette and Robotti (2004), Kox (2013).
21. See the bibliography of Mehra and Rechenberg (1982) for detailed references.
22. Schwarzschild (1914).
23. Eckert (2013a), p. 47.
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bürg and Bohr himself, did not fare much better.84 As one commen­
tator notes: “Precondition for a successful treatment [of the Stark 
effect] was the extension of Bohr’s idea by Sommerfeld: the addi­
tion of elliptical orbits to the circular orbits of atomic electrons.”85

24-Hermann (1965a), pp. 15-16; Kragh (2012), pp. 128-129; Eckert (2013a), pp. 
18-20, pp. 26-27. See Darrigol (1992), pp. 90-92, for discussion of Bohr’s attempt.
25. Hermann (1965a), p. 16.
26. Sommerfeld (1915a), p. 450.
27. For brief overviews of this development, see, e.g., Eckert (2013c), sec. 7.4, and 
Kragh (2012), secs. 4.2-4.4.
28. Eckert (2013b), p. 32. Just adding elliptical orbits to circular orbits with discrete 
energies picked out by one quantum number gives a continuous set of orbits and 
does not provide a basis for an account of the discrete line splittings in the Stark 
effect.

Discrete sets of orbits, circular or elliptical, in and of themselves 
do not provide any new resources for the analysis of line splittings 
in electric and magnetic fields. An external field will affect the en­
ergy of the orbits. If the change in energy of one orbit is different 
from that of another, this will also change the frequency of the light 
emitted in a quantum jump from one to the other. So spectral lines 
would shift. But how would we explain that they split? Our only op­
tion, it seems, would be to establish that the effect of an external 
field on the energy of an orbit depends in just the right ways on the 
orientation of the orbit with respect to the field. Since the orbits in 
a gas of atoms will have different orientations with respect to the 
field, we could then use such dependence to explain the splitting of 
the spectral lines. It is unclear, however, whether that dependence 
would give us discrete multiplets or just a blurring of the spectral 
lines. In fact, Sommerfeld expected that this approach could only 
provide a natural explanation of triplets, as in Lorentz’s classical 
explanation of the Zeeman effect.86

Sommerfeld’s extension of Bohr’s model,87 by contrast, suggest­
ed a whole new kind of explanation of line splittings. The impor­
tance of the generalization from a discrete set of circular orbits to a 
discrete set of elliptical orbits in this context is that the latter require 
two quantum numbers whereas the former only required one.88 Som­
merfeld thereby introduced the key notion of degeneracy, to use the
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modern term. The discrete set of allowed Kepler ellipses correspond 
to the exact same set of energy values as the original discrete set of 
allowed circular orbits, but the way in which these energy values 
and thus the transition frequencies are determined by quantum 
numbers is different in the two cases.

For circular orbits, the allowed energy levels are given by89

29. Bohr (1913). Here and in the rest of the paper we use our own modernized nota­
tion.
30. Sommerfeld (1915a), p. 439.

(1)

where h is Planck’s constant, R is the Rydberg constant, and n is a 
non-negative integer. The frequency of the radiation emitted 
when an electron jumps from an initial orbit with quantum number 
n, to a final orbit with quantum number nf <nf is given by 
hv„.^„f= E„.~ E„f. Bohr thus arrived at the following formula for the 
frequencies of the spectral lines in hydrogen:

The well-known Balmer lines in the visible region of the spectrum 
are the ones for which nf = 2. The most striking success of Bohr’s 
model was that the Rydberg constant could be expressed in terms 
of more fundamental constants:

(3)

where p and -e are the (reduced) mass and charge of the electron, 
respectively.

For a discrete set of elliptical orbits, Sommerfeld showed, Eq. (1) 
gets replaced by3°

E(nr,nr)
hR

(nr + nY)2’ (4)
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where the radial quantum number n,. is a non-negative integer and 
the azimuthal quantum number nv is a positive integer. Eq. (2) ac­
cordingly gets replaced by

(5)

where (/?,. + > (/-/, + n^f. Sommerfeld found that, unless he quan­
tized eccentricity as well as angular momentum, he did not get a 
discrete set of energy values for the allowed elliptical orbits. Com­
menting on Eq. (5), he wrote:

With the addition of our quantized elliptical orbits, the [Balmer] se­
ries has gained nothing in terms of number of lines and lost nothing 
in terms of sharpness. Instead of the diffuse bands discussed earlier 
[before eccentricity was quantized] we once again have the discrete 
Balmer lines, but now with an extraordinarily increased multiplicity 
of ways in which they can be generated.31 32

31. Sommerfeld (1915a), p. 440.
32. Sommerfeld (1915b). This paper was presented in January 1916 but was still in­
cluded in the proceedings volume for 1915.
33. Eckert (2013a), pp. 49-51.
34. Eckert (2013a), p. 33.

Sommerfeld only found new lines when he solved the Kepler prob­
lem relativistically in the next paper he presented to the Munich 
Academy.38 The fine structure of the hydrogen spectrum predicted 
by this relativistic calculation was confirmed within a few months 
by the Tübingen spectroscopist Friedrich Paschen in close consulta­
tion with Sommerfeld.33 Compared to this triumph, the non-rclativ- 
istic treatment of the Kepler problem was disappointing:

As long as Sommerfeld could not produce any tangible evidence [i.e., 
new lines] for the generalized Balmer formula [Eq. (5)], his theory 
compared to Bohr’s atomic model had to appear as a very interesting 
but basically unnecessary extension.34
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As Sommerfeld clearly realized, however, and as Michael Eckert 
proceeds to show, the extension from circular to elliptic orbits was 
of great importance even in the absence of “tangible evidence” de­
ciding between Eq. (2) and Eq. (5).

Since the various energy levels in a hydrogen atom could be real­
ized in many more ways with Sommerfeld’s ellipses than with Bohr’s 
circles, Sommerfeld’s theory provided a brand new tool for attempts 
to account for the Stark and Zeeman effects. The notion of degen­
eracy, which Sommerfeld in effect introduced by replacing Eq. (1) 
with Eq. (4), suggested that one try to explain these effects by show­
ing that electric and magnetic fields lift the degeneracy in the energy 
of the orbits in just the right way. After all, an aggregate of hydro­
gen atoms with electrons jumping between all these different al­
lowed elliptic orbits should be expected to start emitting light at 
many more frequencies than those given by the Balmer series as 
soon as an electric or a magnetic field changes the energies of those 
orbits and changes them in a way that is different from one orbit to 
another so that the radiation frequencies corresponding to transi­
tions between orbits also change. Hence, even in the absence of 
“tangible evidence,” Sommerfeld’s generalization from circular to 
elliptic orbits had great heuristic potential.

Sommerfeld emphasized this potential in a section of his paper 
devoted to the Stark effect.35 Although he acknowledged that a de­
tailed theory of how the electric field lifts the degeneracy in this case 
had yet to be developed, he pointed to the large number of lines that 
Stark had found and argued that this made the approach he was 
proposing especially promising. “The hour has come for a true theo­
ry of the Zeeman effect,” he enthusiastically wrote to Wilhelm Wien 
on 31 December 1915,36 a few weeks after submitting the first and a 
few weeks before submitting the second paper on his extension of 
Bohr’s theory to the Munich Academy. Sommerfeld turned out to be 
wrong about the Zeeman effect, but right about the Stark effect. By 
the end of March 1916, Epstein and Schwarzschild had worked out 
a theory of the Stark effect exploiting his notion of degeneracy.

35. Sommerfeld (1915a), pp. 449-451.
36. Quoted in Eckert (2013a), p. 44.
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The other key insight that made it possible to account for the 
Stark effect was Schwarzschild’s realization that the quantum con­
ditions proposed by Sommerfeld could be connected to action-an­
gle variables and Hamilton-Jacobi theory, both of which Schwarz­
schild was intimately familiar with because of his expertise in 
celestial mechanics.

Drawing on Max Planck’s idea of quantizing the phase space 
spanned by a coordinate q and its associated momentum p, Som­
merfeld had quantized what he called the “phase integral” for peri­
odic systems, initially for systems with only one degree of freedom,37

37. Sommerfeld (1915a), p. 429.

p dq = nh. (6)

The integral is to be taken over one period of the motion. The quan­
tum number n has to be a non-negative integer. In this way Som­
merfeld could recover, in just a few lines and in a unified manner, 
both the quantization of the energy of the harmonic oscillator need­
ed in black-body radiation theory and the quantization of angular 
momentum in the Bohr model of the hydrogen atom.

Consider a harmonic oscillator, a point mass m on a spring with 
spring constant k. The characteristic angular frequency of this sys­
tem is co =2m’ = yjk/m. The trajectory of the point mass in the phase 
space spanned by its position q and its momentump is an ellipse the 
size of which is determined by the energy E = p2!(2m) + kq2!2. Using 
that p = \l2mE for q = 0 and that q = \j2Elk for p = 0, we see that the 
major and minor semi-axes, c/m;l|or and dminor, of this ellipse are \l2mE 
and \l2Elk, respectively. The phase integral over one period of the 
motion is equal to the area of this ellipse, ^dmajordminor. Sommerfeld’s 
phase integral quantization condition (6) thus gives

pdq = 7i\/‘2mEy/‘2E/k = 2tvE \/ m/k = E/u = nh,

which is the familiar quantization condition E = nhv for the energy 
of the harmonic oscillator.
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In the first installment of his famous trilogy,38 Bohr had similarly 
quantized the total energy E of an electron in a hydrogen atom 
to select its allowed circular orbits (with radii r„ and orbital frequen­
cies v„): \E\ = Eki„ = nhvjl.39 The relation between the kinetic energy, 
Ekm = of an electron in the nth orbit (n =1. 2, 3, ... )

38. Bohr (1913).
39. The virial theorem says that, for a 1/r Coulomb potential, Ekin = -yrpot, where Ekin 
and /.piot are the average kinetic and potential energies. For circular orbits, Ekin and /'.pot 
are constant so it follows from the virial theorem that Ekin = - yrpot. From E = Ekin + Epot, 
it then follows that E = -E^.
40. Bohr (1913), p. 15. For discussion, see Heilbron and Kuhn (1969), p. 280.
41. Sommerfeld (1915a), pp. 432-440.
42. Sommerfeld (1915b).

and its angular momentum, L = in that orbit is simply
L = E^Jm’„. Bohr could thus rewrite the quantization condition as 
L = nh, where h = /z/2^.4°When (p. t/) are chosen as (/., <p), where <p is 
one of the polar coordinates (r, <p), Sommerfeld’s phase integral 
quantization condition (6) reproduces Bohr’s quantization condi­
tion in the form L = nh-.

/ L dp = 2tvL = nh.
Jo

Note, however, that we need to add to Sommerfeld’s quantum con­
dition (6) in this case that n 0. There cannot be an orbit with van­
ishing angular momentum.

Since the Kepler problem involves two degrees of freedom, two 
phase integrals need to be quantized for the generalization from a 
discrete set of circular orbits to a discrete set of elliptical orbits.41 42 
Solving the Kepler problem in polar coordinates, Sommerfeld ar­
rived at the quantum numbers nv and nr given in Eq. (4):

l„,dr = n,K (7)

with pv = L and the additional condition nv 0 (cf. Eq. (4)). Som­
merfeld then applied this same approach to the relativistic Kepler 
problem.48 As he told Schwarzschild in a letter of 28 December 
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1915, he was “moving full steam ahead on spectral lines, with fairy­
tale results.”43

43. Eckert (2013a), p. 29.
44. This letter is quoted in full in Eckert (2013a), pp. 44-45. See also Eckert (2014), 
p. 151.

Two months later, on 1 March 1916, Schwarzschild sent Som­
merfeld a letter in which he made the connection between phase 
integrals such as those in Eqs. (6)-(7) and action-angle variables.44 
Consider Hamilton’s equations for some multiply-periodic system 
with Hamiltonian H described in terms of generalized coordinates 
qk and their conjugate momenta pk:

One way to solve these equations is to perform a canonical transfor­
mation to new variables, called action-angle variables and typically 
denoted by J and w, that have the desirable property that the Ham­
iltonian, written as a function of the new variables, only depends on 
the new momenta, the action variables Jk, and not on the new coor­
dinates, the angle variables wk. A generating function S(qk. Jk), which 
is known as Hamilton’s principal function and turns out to be equal 
to the action integral for the system, is used to implement the trans­
formation (cp.p^) ()vkJky.

(9)

In action-angle variables, Hamilton’s equations have the simple 
form: 

(10)

where the iy’s are the characteristic frequencies of the system. The 
equations for d>k allow us to find these characteristic frequencies 
without fully solving the equations of motion. This explains much 
of the appeal of action-angle variables in celestial mechanics. Eqs. 
(10) can readily be solved. The hard part is finding the generating 

230



SCI. DAN. M. I THE STARK EFFECT IN THE BOHR-SOMMERFELD THEORY

function that gets us from Eqs. (8) to Eqs. (10). This re­
quires the solution of the so-called Hamilton-Jacobi equation for 
the system, which we obtain by making the substitutions

as

(see Eq. (9)) in the Hamiltonian and setting the result equal 
to some constant.45

45. For further discussion of canonical transformations, action-angle variables, and 
Hamilton-Jacobi theory, we refer the reader to graduate textbooks in classical me­
chanics such as Goldstein et al. (2002), Matzner and Shepley (1991) and Corben and 
Stehle (1994). For an insightful discussion of the use of these techniques in the old 
quantum theory and wave mechanics, see Yourgrau and Mandelstam (1979), Chs. 
10-11, pp. 97-126. See also Michiyo Nakane’s contribution to this volume.
46. That this is true, for instance, in the case of the phase integrals in Eqs. (7), is be­
cause the Hamilton-Jacobi equation for the non-relativistic treatment of an electron 
orbiting the nucleus in a hydrogen atom is separable in polar coordinates (see the 
paragraph following Eq. (16) for a definition of the notion of separability of the 
Hamilton-Jacobi equation).
47. Eckert (2013a), p. 45.

The equations for Jk in Eqs. (10) tell us that the action variables 
Jk are constants of the motion. This makes them suitable candidates 
to subject to quantum conditions. In fact, what Schwarzschild 
pointed out to Sommerfeld was precisely that his phase integrals 
can be seen as action variables.46 Sommerfeld’s quantization condi­
tions can be written as:

Jk = J Pk dqk = J = nkh. (11)

As Schwarzschild told Sommerfeld, it was only after he had cast the 
quantization conditions in this new form that they had become tru­
ly compelling for him. He added that they now also provided a 
definite point of departure for the treatment of the Stark effect and 
the Zeeman effect. “There are violins hanging all over the quantum 
heavens,” he rhapsodized in another letter to Sommerfeld four days 
later.47
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Given how important we now know these techniques from celes­
tial mechanics were for the development of the Bohr-Sommerfeld 
theory, Sommerfeld’s reaction to Schwarzschild’s communication 
may come as a surprise. In his reply of 9 March 1916, he admitted 
that he was unfamiliar with the techniques Schwarzschild was refer­
ring to and that this would probably be true for most physicists.48 
Sommerfeld, however, immediately recognized the importance of 
Schwarzschild’s intelligence. He relayed the information to Ep­
stein, now an enemy alien in wartime Munich, who, at Sommer­
feld’s suggestion, had taken up the problem of the Stark effect for a 
habilitation thesis. In his interview for the Archiv efor History of Quan­
tum Physics (AHQP) in 1963, Epstein recalled the sinking feeling he 
had upon hearing that Schwarzschild had resumed work on the 
Stark effect: “Now I have no prospects unless Schwarzschild should 
go to Heaven.”49 Epstein would obviously have preferred Schwarzs­
child to fiddle with another problem in his quantum heaven, but he 
may not have known back in March 1916 that Schwarzschild had 
contracted pemphigus while serving on the Russian front, an auto­
immune disease causing painful blisters on the skin that would kill 
him only two months later.

48. Eckert (2013a), p. 46.
49. AHQP interview with Epstein, session 1, p. 11, quoted by Mehra and Rechen- 
berg (1982), p. 225, note 355).
50. Eckert (2013a), p. 47.
51. Epstein (1916a), Schwarzschild (1916).

Whether or not he was aware of his rival’s predicament, Epstein 
understood that there was no time to lose if he wanted to beat 
Schwarzschild to the punch. Fortunately, inspired perhaps by 
Schwarzschild’s 1914 paper on the Stark effect, Epstein had already 
begun to bone up on celestial mechanics. On 21 March 1916, he 
handed in his solution for the Stark effect to Sommerfeld. Later that 
same day, Sommerfeld received a letter from Schwarzschild with a 
virtually identical solution.50

Epstein submitted a preliminary note to Physikalische Zeitschrift cm 
29 March 1916, the day before Schwarzschild submitted his paper 
to the Berlin Academy.51 Epstein’s note appeared on 15 April 1916, 
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Schwarzschild’s on 11 May 1916.52 53 54 5S Schwarzschild died that same 
day. He was only 42 years old. In a popular article published later 
that year, “The quantum theory of spectral lines and the last paper 
of Karl Schwarzschild,” Sommerfeld highlighted and praised 
Schwarzschild’s contributions to the old quantum theory.53

52. Mehra and Rechenberg (1982), p. 225.
53. Sommerfeld (1916).
54. Epstein (1916b).
55. Kramers (1919), pp. 16-18.

A few days before Schwarzschild “went to Heaven,” Epstein sub­
mitted a lengthy paper with the details of his explanation of the 
Stark effect to Annalen der Physik.This paper appeared in July 1916. 
In what follows, we present the derivation of the formula for the 
energy levels in the (first-order) Stark effect in the form in which it 
appears in the dissertation by Kramers.55 Kramers cites Epstein’s 
Annalenpaper as his source.

2.1. Solving the Hamilton-Jacobi equation to find the line splittings in the 
Stark effect in hydrogen

In Cartesian coordinates (x, y z), the Hamiltonian for an electron in 
a hydrogen atom in an external electric field E in the z-direction is 
given by (in Gaussian units):

H = f-e-+£z, (12)
2/j, r

where p1 = pp + pp + pp, with (px, pv pP) the components of the mo­
mentum p, and r = Vx2 + y2 + z2. The external electric field applied by 
Stark was weak compared to that of the hydrogen nucleus keeping 
the electron in orbit, which means that it can be treated as a small 
perturbation, amenable to the standard techniques of canonical 
perturbation theory borrowed from celestial mechanics.

However, in this case these techniques could not be used in ei­
ther Cartesian or polar coordinates. Instead, both Epstein and 
Schwarzschild used parabolic coordinates (fi, q, fi), related to (x, y, z) 
via
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= X + » = r = <±7

where we followed Kramers rather than Epstein.56 In parabolic co­
ordinates, the Hamiltonian in Eq. (12) is given by:

56. Kramers (1919), p. 17, Eq. 43; Epstein (1916b), p. 495, Eqs. 19-20. See Fig. 1, Eqs. 
(2)-(4) and note 2 in Duncan and Janssen (2014) for more detailed discussion of the 
difference between Epstein’s and Kramers’ definitions of the coordinates (<f. //. <p).
57. It had long been known that the corresponding problem in celestial mechanics,

H=h } - rG +

where (p(, p,,, are the momenta conjugate to (£ //, <p). In the old 
quantum theory, as in classical mechanics, p(&( = &<? and 
ppnPt! = VPv2 ■ It is with malice aforethought that we wrote these prod­
ucts the way we did in Eq. (13): in wave mechanics p« is replaced by 
a differential operator, (7?/z) dld£, that does not commute with multi­
plication by £

Setting H = a1; where aT is some negative constant giving the en­
ergy of the system, multiplying both sides by 2p(<^ + //), using that

^7^ = 7 + -, + =<2-^?2, (14)

and making the substitutions

we arrive at the Hamilton-Jacobi equation for this system in para­
bolic coordinates:

45(© +4ri(S) + G + G O = w+^i.cie)

At this point, the reason for using parabolic coordinates becomes 
clear: the Hamilton-Jacobi equation is separable in these coordinates, 
which means that its solution is the sum of three terms that each 
depend only on one of the three coordinates:57
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5'«,f?w) = S'e«) + S'„(f?) + ^M- (17)

the motion of a body attracted by two other bodies one of which has a very large 
mass and is at a very large distance, is separable in parabolic coordinates. This is 
noted, for instance, in Bohr (1918), pp. 20-21.
58. See Sec. 2 of Duncan and Janssen (2014) for a detailed self-contained version of 
the derivation only sketched here.
59. Einstein (1917). “In spite of its general and novel approach, Einstein’s paper was 
ignored by most” (Einstein, 1987-2012, Vol. 6, p. xxv).

S?(</>) can simply be set equal to a3q>. Hence,

(18)

When a3 is substituted for dSIdqt = dS^dcp in Eq. (16), the equation 
splits into a part depending only on g and a part depending only on 
//. Since the sum of these two parts must vanish, the two parts them­
selves must be equal but opposite constants. Denoting these con­
stants by =F2a2, we can schematically write the Hamilton-Jacobi 
equation (16) as* 58

Terms with —J, «i, a3 depending on £ + Terms with —cv3 depending on r/ = 0, 
dr]

' '(19)

which splits into separate equations for S) and Sq of the form

(r), 04, 04,04). (20)

We now impose the Sommerfeld-Schwarzschild quantum condi­
tions (11). So far, it may have looked as if we could impose these 
conditions in arbitrary coordinates. It turns out, however, that the 
conditions can only be imposed consistently in coordinates in which 
the Hamilton-Jacobi equation for the system under consideration is 
separable. As Albert Einstein pointed out, in a paper that did not 
attract much attention at the time,59 this amounts to a severe limita­
tion of the formalism of the Bohr-Sommerfeld theory, over and 
above its restriction to multiply-periodic systems, as there are many

— = u«, 04,04, 04),
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systems for which the Hamilton-Jacobi equation is not separable in 
any coordinates. The formalism, however, does work for the case at 
hand. Introducing the notation L. I,v and/^, for the action variables, 
we thus impose the quantum conditions 

(21)

where m, n,z, and nv are non-negative integers. Both Epstein and 
Schwarzschild assumed that the values of 7«, I,p and Iv in the pres­
ence of a weak electric field 8 are the same as their values in the ab­
sence of such a field. Where the cases 8 =0 and 8 # 0 differ is in how 
the separation constants aT and a2 depend on the action variables. 
Recall that aT is equal to the energy E. So even though the action 
variables have the same values for 8 = 0 and 8^0, the energy does 
not.

The justification of the assumption that action variables have the 
same values for 8=0 and 8 # 0 is that they are what Ehrenfest called 
adiabatic invariants. In June 1916, Ehrenfest presented a paper to 
the Amsterdam academy connecting the adiabatic principle, which 
he had already been working on for a number of years, to the Bohr- 
Sommerfeld theory.60 In July, he submitted a similar paper to An­
nalen der Physik.61 In September he added a postscript to the latter 
responding to Schwarzschild’s combination of the Bohr-Sommer- 
feld theory and Hamilton-Jacobi theory:

60. Ehrenfest (1916a).
61. Ehrenfest (1916b). See Pérez (2009), pp. 83-84, for a concise overview of Ehren- 
fest’s papers on the topic in 1916.
62. Such as Peter Debye (Eckert, 2013a, p. 52)

The beautiful researches of Epstein, Schwarzschild, and others62 
which have appeared in the meantime, show the great importance 
that cases integrable by means of Stäckel’s method of “separation of 
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the variables” have for the development of the theory of quanta.63 
Hence the question arises: to what extent are the different parts into 
which these authors separate the integral of action according to 
Stäckel’s method adiabatic invariants?64

63. Staeckel (1891).
64. Ehrenfest (1916b), translation based on Pérez (2009), p. 93
65. Burgers (1917a,b,c). For discussion, see Klein (1970), pp. 290-291; Yourgrau and 
Mandelstam (1979), pp. 110-111; and Pérez (2009), pp. 93-102.
66. See Sec. 2 of Duncan and Janssen (2014) for a self-contained version of these 
calculations.

Ehrenfest’s question was taken up by one of his students in Leyden, 
Johannes (Jan) Burgers, who showed that action variables such as 
those in Eqs. (21) are indeed adiabatic invariants.65

We now return to the calculation for the Stark effect. The next 
step is to evaluate the integrals in Eqs. (21) after substitution of the 
right-hand sides of Eqs. (18) and (20) for the integrands. For/^, we 
find with the help of Eq. (18):

/ clip = 27TO3 = n,„h. 
dp (22)

In other words, a3 = so rp is the familiar azimuthal quantum 
number typically denoted nowadays by m. Similarly, although per­
forming the integrals now requires some effort, we can express the 
action variables 2« and In in terms of the separation constants aT, a2, 
and a3. We then invert these relations to find the as in terms of the 
I’s and thereby in terms of the quantum numbers m, n,z, and rp. We 
need to do this twice, first for E = 0, then to first order in E # 0. We 
will not go through these calculations in detail but only state the 
end results.66

In the absence of an external field (E = 0), the sum of/«,/,z, and/^, 
for E = 0 is given by

h +
27r/ze2

v/-2/tai

Solving for a}, we find
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27r2/ze4
(Je + In + C)2

This reduces to the expression -hR/n2 for the allowed energy levels 
in a hydrogen atom in the absence of an electric field found earlier 
(see Eqs. (1) and (4)), if the sum of the quantum numbers intro­
duced in Eqs. (21) is set equal to the principal quantum number n:

n = ri£ + n,; + (23)

As in Sommerfeld’s calculation for elliptical orbits in polar coordi­
nates (cf. Eq. (4)), the calculation for elliptical orbits in parabolic 
coordinates for E = 0 thus leads to the same energy levels as Bohr’s 
original calculation for circular orbits (cf. Eq. (1)) but does reveal 
the degeneracy of those energy levels: 

27r2/ze4
/?2(ng + n,; + nv)2

where in the last step we used expression (3) for the Rydberg con­
stant. As in Sommerfeld’s formula for the allowed energy levels in 
polar coordinates (see Eq. (4)), we need to impose further restric­
tions on the allowed values of the quantum numbers in Eqs. (21).67 
First, m, /7,z, and n? cannot all three be zero as the principal quantum 
number n would then be zero. Second, even if ns / 0 and/or /?,z / 0, nv 
cannot be zero. As long as E = 0 there is no problem, but when E / 
0 this orbit becomes unstable and the electron will eventually hit the 
nucleus.

67. Epstein (1916b), sec. 4, pp. 497-501.

The degeneracy in the energy levels in Eq. (24) is lifted once the 
electric field is switched on. The integrals in Eqs. (21) now have to 
be evaluated to first order in E (where in terms of order E we can 
use the relations between as and /’s found for E = 0). In this ap­
proximation, Eq. (24) gets replaced by

hR
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where C = 3h2 fejre [i. The electric field thus produces the splittings

68. The equivalents of Eqs. (25) and (26) in Epstein (1916b) are Eq. 62 on p. 508 and 
Eq. 65 on p. 509, respectively.
69. Epstein (1916b), pp. 509-510.
70. This figure is based on the numbers in Epstein (1916b), p. 512, Table I.
71. Epstein (1916b), pp. 512-513, Tables II-IV.

C £n(n^ T/j (25)

of the energy levels and the splittings

C£ ( \
~ M 77 ) ] 7 — [n(ng — (26)

of the transition frequencies.68 The splittings A/:' in Eq. (25) are sym­
metric around the values for E without an external field. The split­
tings Av in Eq. (26) are likewise symmetric around the values for v 
without an external field. As Epstein noted, this is in accordance 
with Stark’s experimental results.69

Figure 1 illustrates the Stark effect for the Balmer line Ha in the 
hydrogen spectrum.7“ It shows the splittings AE of the energy levels 
/7 = 2 and n = 3 in the presence of an external electric field of strength 
8 and the splittings Av of the frequencies of the radiation emitted in 
transitions from n = 3 to n = 2. Similar though increasingly more 
complicated diagrams can be drawn for Hß (n =4 —> /7 = 2), Hy (n = 5 
—> /? = 2), and H5 (/? =6 —> n = 2).71

The electric field splits the lower level (/7 = 2) into three levels. 
For 8 = 0, the energies of the orbits picked out by the values (101), 
(002), and (Oil) for the quantum numbers (jißn,Tn^) are all the same. 
For E # 0, the energy of the orbit (101) is raised by 2CE, while the 
energy of the orbit (Oil) is lowered by that same amount (cf. Eq. 
(25)). The electric field splits the upper level (/7 = 3) into five levels. 
For 8 = 0, the energies of the orbits (201), (102), (111), (003), (012), 
and (021) are all the same. For 8 # 0, the energies of the orbits (102) 
and (201) are raised by 3C8and 6C8, respectively, while the energies 
of the orbits (012) and (021) are lowered by those same amounts.

For 8 = 0, a quantum jump of an electron from any of the six pos-
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Figure 1: Stark effect for the Balmer line//,, in the hydrogen spectrum: split­
tings A/:' (in units of C8 with 8 the strength of the electric field and C = 
3/r '8^e^) of energy levels for w = 2 and w = 3 [horizontal lines with values of 
AE to the left and values of quantum numbers (//.,//,;,//,,) to the right]; split­
tings Av (in units of C8/1i) of the frequency of the radiation emitted in tran­
sitions from w = 3 to w = 2 [arrows with values of Av to the left - solid arrows: 
parallel polarization; dashed arrows: perpendicular polarization; dotted 
arrows: violation of selection rule]. The figure is not drawn to scale: the 
energy gap between the w = 2 and w = 3 levels is much greater than the level 
splittings.

sible /7 = 3 orbits to any of the three possible /7=2 orbits is accompa­
nied by the same energy loss and therefore by emission of radiation 
of the same frequency. For 0, as indicated by the arrows in Figure 
1, the energy loss in a quantum jump from /7 = 3 to /7 = 2 can take on 
fifteen different values, resulting in frequency shifts Av ranging from 
-%C£/h to + 8C8'h. This means that the frequency of the Balmer line 
Ha, emitted in the transition from /7 = 3 to /7 = 2, splits into fifteen 
different frequencies. Illustrating Epstein’s general observation 
noted above, the fourteen shifted frequencies lie symmetrically on 
opposite sides of the unshifted one.

Epstein eliminated six of these fourteen shifted frequencies, 
three on each side of the unshifted one. He adopted, at least ini­
tially, a selection rule proposed by Sommerfeld, which requires 
that78

72. Sommerfeld (1915a), pp. 447-448; Epstein (1916b), p. 511, Eq. (69)
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n? < n^, < n^, < n^. (27)

According to this selection rule, the six transitions in which one of 
the three quantum numbers increases are forbidden. These are the 
transitions represented by dotted arrows in Figure l.73 The corre­
sponding lines were either absent or exceedingly faint in Stark’s 
spectroscopic data, which supported Sommerfeld’s selection rule. 
The nine remaining transitions all matched lines clearly present in 
Stark’s data: the six transitions indicated by solid arrows (with Av 
equal to ±2, ±3, ±4 times CE/ti) producing light polarized parallel to 
the field; the three transitions indicated by dashed arrows (with Av 
equal to 0, ± 1 times CE/ti) producing light polarized perpendicular 
to the field.

73. Under this selection rule, the transitions ‘(003) —»(Oil)’ and ‘(003) —>(101)’ are 
also forbidden but El00}) = Einll even if £ 0 and the transitions ‘(111)—>(011)’ and 
‘(111)—>(101)’ are allowed, so this does not affect the number of lines.
74. Epstein (1916b), p. 516.

The splittings of other Balmer lines found by Stark violated 
Sommerfeld’s selection rule. To match Stark’s data, Epstein eventu­
ally settled on a modified version of the rule,74 

(28)n? < n^, < n^, nfv < + 1

and emphasized that transitions violating this rule are not strictly 
forbidden, just highly improbable. As we mentioned in the intro­
duction, the explanation of the Stark effect in the Bohr-Sommerfeld 
theory thus requires what in the final analysis are rather arbitrary 
restrictions, both on the allowed energy levels (see our comments 
following Eq. (24)) and on the allowed transitions between them 
(see Eqs. (27) and (28)).

With the help of these additional conditions, Schwarzschild and 
Epstein could account for the frequencies of all components into 
which the Balmer lines were observed to split in the Stark effect. 
This was rightfully celebrated as a tremendous success for the Bohr- 
Sommerfeld theory. However, neither Schwarzschild nor Epstein 
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could account for the polarizations or the intensities of these com­
ponents.

2.2. Using the correspondence principle tofind the polarizations and the 
intensities of the Stark effect components of the Balmer lines

Epstein devoted a section of his paper to polarizations and intensi­
ties.75 He began that section with the following disclaimer:

75. Epstein (1916b), sec. 8, pp. 514-518.
76. Epstein (1916b), p. 514.
77. Epstein (1916b), p. 515, emphasis in the original.
78. See, e.g., Kragh (2012), Ch. 5, for a recent discussion of the correspondence prin-

The theory of Bohr’s atomic model in its current form is based on the 
consideration of stationary orbits at the beginning and at the end of 
every individual radiation process. What happens during the transi­
tion of an electron from one orbit to another is still very unclear to us. 
Accordingly, the goal of this section is not to draw theoretical conclu­
sions about polarization and intensities ... but only to extract lawlike 
regularities from the available empirical material.76

For the polarizations Epstein stated the following empirical law. 
Even values of Nnv = rf-rf give rise to parallel polarization, odd 
values to perpendicular polarization. Note that for the dashed ar­
rows in Figure 1 (polarization perpendicular to the field), An? = ±1, 
while for the solid arrows (polarization parallel to the field), Nnv = 
0. Turning to intensities, Epstein wrote:

[T]he following hypothesis seems to fit the facts best: a component... is 
stronger, caeteris paribus, the greater the largest of the three differences [between 
initial and final quantum numbers]... the idea behind this is that the 
situation is similar to when there is a difference in altitude: the greater 
the difference in quantum numbers the greater the tendency to elimi­
nate that difference.77

Bohr’s correspondence principle78 provided a much more promis­
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ing starting point for dealing with polarizations and intensities of 
spectral lines than Epstein’s “evening out differences in altitude” 
analogy. Consider the Fourier expansion of the position x of a 
particle:* 79

ciple. See the Nobel lecture by Bohr (1923), pp. 38-39, for a concise statement of it. 
Insightful contributions to the more recent literature on the correspondence princi­
ple are Fedak and Prentis (2002), and, building on their paper, Bokulich (2008), sec. 
4.2, pp. 80-94. See also the contributions of Martin Jähnert, Enric Pérez Canals and 
Blai Pie Valls, and Robert Rynasiewicz to this volume.
79. Bohr (1918), p. 31, Eq. (31).
80. Bohr (1918), pp. 31-32.

X = CT1...Ts cos27f|(tiWi .. .rsws)t + cT1...Ts}. (29)
T1...TS

Commenting on this expression, Bohr wrote:

Now on ordinary electrodynamics the coefficients CT1...Ts in the ex­
pression [Eq. (29)] for the displacement of the particles in the different 
directions would in the well known way determine the intensity and 
polarization of the emitted radiation of the corresponding frequency 
qrøj + ... + r/Oj. As for systems of one degree of freedom we must 
therefore conclude that, in the limit of large values for the „’s, the 
probability of spontaneous transition between two stationary states 
of a conditionally periodic system, as well as the polarization of the 
accompanying radiation, can be determined directly from the values 
of the coefficient CT1 ...T, in (31) correspondiong to at set of fs given by 
rk = nk'-nk"\Sni',..., ns' and«/',..., n/'are the numbers which character­
ize the two stationary states.80

In other words, Bohr suggested that, in the limit of large quantum 
numbers, the intensity of the radiation of frequency v^f emitted in 
the transition from an initial orbit with the values (/7b n2, for the 
quantum numbers to a final orbit with the values (/7b n2, n3~)f should 
be equal to the square of the coefficient CT1 of a term in the Fou­
rier expansion of that orbit such that

1 s,—►/ ~j~ (Ei Ef') ' ^k^~k i

k=l 
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and Tk = nk - »/.81 Bohr now took the leap of faith that this asymp­
totic connection between his own theory and classical electrody­
namics would continue to hold if we go from high to low quantum 
numbers. With this general prescription, both intensities and po­
larizations could be handled. A transition between two orbits will 
be accompanied by radiation with a certain polarization and a cer­
tain intensity whenever the relevant coefficient in the orbit’s Fourier 
expansion is non-vanishing. For very large quantum numbers it 
does not matter whether we consider the Fourier expansion of the 
initial or of the final orbit. For low quantum numbers, however, this 
does matter, rendering Bohr’s prescription ambiguous. Should we 
consider the Fourier expansion of the initial or of the final orbit? 
Some average of the two perhaps? Or an average over initial and 
final orbit and all orbits in between?8“

81. Bohr (1918), p. 30, Eq. 30.
82. As Foster and Chalk (1929), two experimentalists who made important measure­
ments of the intensities of Stark effect components (see note 93), put it: “The corre­
spondence principle was indefinite ... in that there were the two amplitudes in each 
case which should, perhaps, be averaged in some manner not obviously expressed. 
Kramers used, for convenience, the arithmetical mean” (p. 109). As we will see, there 
is no such indefiniteness in wave mechanics (see Eq. (41)).
83. Bohr (1918), p. 32.

Despite this ambiguity, this approach based on the correspond­
ence principle was much more promising than the one taken by Ep­
stein based on Sommerfeld’s selection rule (27), which Bohr reject­
ed:

Thus, from the fact that in general negative as well as positive values 
for the r’s appear in [Eq. (29)], it follows that we must expect that in 
general not only such transitions will be possible in which all the n’s 
[e.g., the quantum numbers m, n,;, and nJ decrease, but that also tran­
sitions will be possible for which some of the n’s increase while others 
decrease. This conclusion, which is supported by observations on the 
fine structure of the hydrogen lines as well as on the Stark effect, is 
contrary to the suggestion by Sommerfeld . . . that every of the n’s 
must remain constant or decrease under a transition.83
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In his dissertation, Bohr’s assistant Kramers adopted and elaborat­
ed Bohr’s correspondence-principle approach to account for the 
polarizations and intensities of the Stark effect components of the 
Balmer lines?4 By distinguishing Fourier expansions of the motion 
in the direction of the field (z) and in the plane perpendicular to the 
field (x+iv), Kramers could account for the polarizations found by 
Stark. The exponent for the Fourier expansion of z?5 both for initial 
and final orbit, does not contain r3, which according to Bohr’s cor­
respondence principle should be set equal to n?'- . This suggests

84. Kramers (1919). For discussion, see Dresden (1987), Ch. 11, sec. IV (pp. 107- 
110).
85. Kramers (1919), p. 21, Eq. (60).
86. Kramers (1919), p. 23, Eq. (67).
87. Kramers (1919), pp. 55-57, Tables I-IV.

that AUp = 0 for all transitions in which radiation polarized parallel 
to the field is emitted. Similarly, only terms with r3 = ±1 are present 
in the exponent of the Fourier expansion of x + (v?6 This suggests 
that AWp = ±1 for all transitions in which radiation polarized perpen­
dicular to the field is emitted. Figure 1 illustrates that these conclu­
sions based on the correspondence principle are supported by 
Stark’s findings. The solid-arrow transitions (parallel polarization) 
all have txnv = 0; the dashed-arrow transitions (perpendicular po­
larization) all have An? = ±1.

Kramers could also account, at least qualitatively, for the intensi­
ties of the various components Stark had found?7 In principle, 
Kramers used the average of the squares of coefficients of the rele­
vant Fourier components of the initial and the final orbits to esti­
mate the intensity of the corresponding line. However, even in cases 
where a certain frequency was completely absent from the Fourier 
expansion of both the initial and the final orbit, Kramers left open 
the possibility that the corresponding line might appear in the spec­
trum, albeit only faintly, as its frequency might be present in the 
Fourier expansion of some orbit in between. Kramers thus allowed 
several lines that are forbidden by the selection rules (27) and (28) 
of Sommerfeld and Epstein. As we saw above, Epstein had ruled 
out six possibilities for the transition n = 3 —> n = 2 (see the dotted 
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arrows in Figure 1 with values ±5, ±6, ±8 times C&hfor Av). Kramers 
predicted (correctly as it turned out) that these Stark effect compo­
nents of Ha had just escaped notice so far because of their low inten­
sity.88

88. Kramers (1919), Appendix, Fig. 1 (Kramers (1956), p. 105).
89. Kragh (2012), p. 205. Similarly, Dresden (1987) writes that “[tjhe agreement be­
tween theory and experiment is surprisingly good” and that “Kramers describes this 
impressive agreement in his customary guarded manner” (p. 109). Leone, Paolette 
and Robotti (2004) reproduce a diagram from Kramers’ dissertation showing ob­
served and calculated relative intensities of the Stark effect components of the first 
three Balmer lines, Ha, Hp, andHy, and comment: “Kramers’s theoretical predictions 
were in excellent agreement with Stark’s measurements” (p. 288).
90. Bohr (1923), p. 39, reproduced in Kragh (2012), p. 206.
91. Bohr (1923), p. 39.
92. Adams (1923), p. 88, quoted in Kragh (2012), p. 206.
93. See the biographical memoir by Bell (1966), for a discussion (pp. 150-153) and a 
bibliography of Foster’s work on the Stark effect, which he started as a graduate 
student at Yale in the early 1920s and continued until the late 1930s as a professor at 
McGill. As his biographer points out, “[d]uring all of his work on the Stark effect he 
brooded over the design of Lo Surdo discharge tubes, and he was able to make them 
behave better than anyone else” (Bell, 1966, p. 151). See Leone, Paolette and Ro­
botti (2004), especially Figs. 4, 6, 9, and 10, for a comparison between the experi­

In his 2012 book on the Bohr model, Helge Kragh observes: 
“Kramers arrived at theoretical values for the relative intensities 
that he modestly described as ‘convincing’. In fact the agreement 
between theory and experiment was nearly perfect.”89 Kragh repro­
duces a diagram from Bohr’s Nobel lecture showing remarkably 
close agreement between Kramers’ theoretical values and Stark’s 
experimental results for the relative intensities of the Stark effect 
components of Hy.9° Discussing this diagram, Bohr stated that “the 
theory reproduces completely the main feature of the experimental 
results.”91 92 Kragh proceeds to quote from a Bulletin of the National 
Research Council on quantum theory, in which Kramers’ results are 
hailed as “most convincing evidence for the value of [Bohr’s] 
principles.”98 Finally, he cites a 1924 paper by John Stuart Foster 
with the results of measurements of the relative intensities of some 
Stark effect components of He, the Balmer line corresponding to the 
transition n =1 ->n = 2.93 Foster wrote:
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At the time Kramers’ dissertation was published there were no 
observations with which to compare his theoretical estimates of the 
relative intensities of the Stark effect components of He. Two of the 
plates exposed . . . during this investigation show many components 
of this line . . . The relative intensities of the stronger inner compo­
nents are very close to the predicted values.94

mental setups used by Lo Surdo and Stark. In 1926, Foster spent almost a year in 
Copenhagen on an International Education Board fellowship, which gave him “the 
chance to publish his most important single paper” (Bell, 1966, p. 148). In this pa­
per, communicated by Bohr, Foster (1927) presented both theoretical and experi­
mental results on the Stark effect in helium.
94. Foster (1924), p. 675.
95. In 1928, Chalk became the first woman to earn her Ph.D. in physics at McGill.
96. See the diagrams in Condon and Shortley (1963), p. 401, based on the experi­
mental work of Foster and Chalk, Mark and Wierl and others in the late 1920s, which 
show that in most cases the quantum-mechanical predictions for the intensities of the 
Stark effect components of Ha, Hß, Hy, and Hs agree within a few percent with experi­
ment. Condon and Shortley (1963), p. 402, caution that these measurements “do not 
agree in detail with the theory, but provisionally we shall regard this as due to the 
large number of variations in physical conditions in the experimental work.” The 
dependence of the results of measurements of the intensities of the Stark effect com­
ponents of the Balmer lines on the experimental setup is emphasized by Mark and 
Wierl (1929), p. 538.

In subsequent experiments, however, undertaken with his graduate 
student Laura Chalk,95 Foster found relative intensities for some 
Stark effect components of Ha and Hß that differed markedly from 
those reported by Stark and from the theoretical values found by 
Kramers. The new experimental values, however, generally agreed 
with the intensities predicted by wave mechanics.96 As Foster and 
Chalk reported:

By means of wave mechanics, Schrödinger [1926] has made quantita­
tive calculations of the intensities of Stark components in hydrogen 
which are commonly considered to be an improvement on the earlier 
estimates based on the correspondence principle [Kramers (1919)]. 
That this is so in the case of Hß was shown recently by the writers in a 
quantitative experimental investigation [Foster and Chalk (1926)].

The greatest variation of the new theory from Prof. Stark’s results,
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Observed
(Stark)

Wave Mechanics 
(Epstein)

Correspondence 
Principle 
(Kramers)

Il ill
Wave Mechanics 
(Schrödinger)

Figure 2: Four sets of values (one experimental, three theoretical) for the 
intensities of the six parallel Stark effect components of Ha (cf. Figure 1). 
From Foster and Chalk (1928), p. 830, Figure 1.

however, occurs in the parallel components of Ha. There are three 
pairs of such components which have been photographed; and in the 
original experiments, as well as in the older quantum theory, the out­
side components were found to be the strongest. This is further sup­
ported by the recent calculations of Epstein [1926] on wave mechan­
ics. In contrast to these results, Schrödinger finds the greatest 
intensity for the pair with intermediate displacements. The difference 
between Schrodinger’s calculations and the observations of Stark is 
obviously rather large to be considered as an experimental error. Yet 
this is what it appears to be according to numerous plates obtained 
by the junior author in an extension to the earlier experiments, the 
new results being in general agreement with the calculations of 
Schrödinger.97

97. Foster and Chalk (1928), p. 830. In square brackets are the papers cited by Foster 
and Chalk in this passage.

The three pairs of parallel Stark effect components of Ha mentioned 
by Foster and Chalk correspond to the six solid lines in our Figure 
1, with Av = ±2, ±3, ±4 (in units of C&Ji). Figures 2 and 3 show the 
diagrams with which Foster and Chalk illustrated their claims.

Foster and Chalk suspected that Epstein’s calculations only
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Figure 3: Foster and Chalk’s measurements of the intensities of the six par­
allel Stark effect components ofHa corresponding to those shown in Figure 
2. The peak at the center, the authors explain, may suggest that there is “a 
strong undisplaced parallel component, but, in reality, this is due to the 
overlapping of the images on the slit.” From Foster and Chalk (1928), p. 
831, Figure 2.

agreed with Stark’s old data because Epstein had made some errors. 
This suspicion was confirmed the following year when Walter Gor­
don and Rudolph Minkowski corrected Epstein’s calculations and 
showed that they led to the same results as Schrodinger’s.98

98. Gordon and Minkowski (1929), cited by Condon and Shortley (1963), p. 400 (cf. 
note 129 below).
99. Foster and Chalk (1928), p. 116-118.

Foster and Chalk concluded that the intensities found by 
Schrödinger agreed well with their experimental findings:

Within the limits of experimental error the new results agree, we be­
lieve, with the calculations by Schrödinger. The well-marked agree­
ment in the lines Ha and Hß is of especial importance, since it is in the 
case of low quantum numbers that the new quantum-theoretical cal­
culations show the greatest departure from the estimates of the older 
theory.99
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In a paper on the Stark effect in helium (cf. note 93), Foster gave the 
following assessment of the experimental situation concerning the 
intensities of the Stark effect components of hydrogen’s Balmer 
lines: “The question of the intensity of the components has been 
fully treated by Schrödinger, whose results form a quantitative exten­
sion of the qualitative estimate given earlier by Kramers on the basis of the cor­
respondence principle.”100 101 102

100. Foster (1927), p. 139 (our emphasis).
101. Jammer (1966), p. 101.
102. Epstein (1916b), p. 507; Sommerfeld (1919), p. 502-503 (see also Sommerfeld 
(1923), p. 284).

2.3. The non-uniqueness of orbits

To conclude our discussion of the Stark effect in the old quantum 
theory, we turn to the problem mentioned in the introduction that 
the electron orbits allowed by the quantization conditions depend 
on the coordinates in which these conditions are imposed. Although 
one finds the same energy levels in different coordinate systems, one 
does not always find the same orbits.1“ The analysis of the Stark 
effect in hydrogen provides a dramatic illustration of this problem. 
The orbits found in parabolic coordinates when the electric field is 
set equal to zero differ sharply from those found without an exter­
nal electric field in polar coordinates. Both Epstein and Sommer­
feld acknowledged this discrepancy.108 Both of them expressed the 
(idle) hope that the problem would disappear once relativistic 
effects were taken into account.

In an appendix to the first edition of Atombau und Spektrallinien, 
“Quantization of elliptical motion according to the method of sepa­
ration of variables,” Sommerfeld showed how to solve the Kepler 
problem in the old quantum theory (one electron orbiting a nucle­
us) by separating the Hamilton-Jacobi equation for the problem in 
polar coordinates. He then raised the issue of the uniqueness of this 
choice of coordinates

Are polar coordinates . . . the only variables in which [the Hamilton- 
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Jacobi equation for the Kepler problem] can be separated? Do other 
coordinates, should there be any, lead to the same result [for the ex­
pression for the energy of the quantized orbits]?

The first question is to be answered negatively. When treating the 
Stark effect ... we saw that [the Hamilton-Jacobi equation] for the 
Kepler problem with an external electric field (and hence also for the 
problem without one) can be separated through the introduction of 
so-called parabolic coordinates. The quantum conditions that obtain 
in these coordinates and the quantized orbits that result from them 
are different from those found in polar coordinates. The main result 
of our treatment, however, remains unaffected, for the expression for 
the energy quantized in parabolic coordinates [our Eq. (24)] has the 
same form as the one found here [our Eq. (4)].

The ambiguity disappears when we treat the problem more com­
pletely, i.e., by taking into account the relativistic variability of the 
electron mass ... For this problem, the nature of our task makes polar 
coordinates the preferred ones. As we must think of ordinary mechan­
ics as the limiting case of relativistic mechanics, we can also consider 
our treatment of the Kepler problem in polar coordinates as the le­
gitimate limiting case of the complete and non-arbitrary relativistic 
solution of the problem.103

103. Sommerfeld (1919), pp. 502-503.
104. Epstein (1916b), p. 507.

Note that Sommerfeld sidestepped the question about which coor­
dinates to use for the relativistic Kepler problem with an external 
electric field. Epstein did address that question, even if he did not 
have a satisfactory answer to it:

Even though this does not lead to any shifts in the line series, the no­
tion that a preferred direction introduced by an external field, no 
matter how small, should drastically (in einschneidender Weise) alter the 
form and orientation of stationary orbits seems to me to be unaccep­
table. The solution of this apparent paradox is to be expected from a 
theory in which relativity and external field are taken into account at 
the same time . . . This would involve an extension of the quantum 
conditions for situations with a superposition of two effects that indi­
vidually can be handled through a separation of variables.104
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It is not clear what such an extension would look like. One might 
have held out hope that an exact treatment would lead to a Hamil­
ton-Jacobi equation that is only separable in one unique set of coor­
dinates. One could then argue that the real orbits of the system are 
the ones found in those coordinates. Alas, the exact treatment of 
any but the simplest systems will result in Hamilton-Jacobi equa­
tions that are not separable in any coordinates.“5

In the first installment of his 1918-1922 trilogy on the old quan­
tum theory, Bohr also discussed the non-uniqueness of orbits in 
cases where the Hamilton-Jacobi equation is separable in more than 
one coordinate system.“6 Bohr argued that this will typically be the 
case for ‘degenerate systems’:“7

In the cases of degeneration . . . the conditions \Ik = nkh (cf. our Eqs. 
(21))] involve an ambiguity, since in general for such systems there 
will exist an infinite number of different sets of coordinates which al­
low of a separation of variables, and which will lead to different mo­
tions in the stationary states, when these condition are applied. As we 
shall see below, this ambiguity will not influence the fixation of the 
total energy in the stationary states which is the essential factor in the 
theory of spectra.“8

105. As Epstein (1916b) had noted a few pages earlier: “Unfortunately, the relativistic 
motion around a center of attraction under the simultaneous influence of an external 
field does not belong to the class of problems that can be solved through separation 
of variables” (p. 500).
106. Before we present our gloss on Bohr’s remarks, a word of caution seems in order. 
As Helge Kragh (2012) explains: “While the trilogy of 1913 was clearly structured 
and fairly easy to follow [though Heilbron and Kuhn (1969) showed that even that 
text is not nearly as straightforward as it may appear to be at first sight], the new tril­
ogy of 1918-1922 was anything but. It was, as Bohr said with understatement to 
Ehrenfest, ‘somewhat unmanageable’. Both the structure and style of the memoir - 
Bohr did not bother to split up sections into smaller bits or to limit the length of his 
sentences - made it something of a nightmare for the reader. Important as it was, it 
was definitely not a lucid work” (p. 192).
107. See Bohr (1918), p. 20, for his definition of “degenerate systems.” For our pur­
poses, all that matters is that Bohr treats the hydrogen atom without an external 
electric field as an example of such a degenerate system (see Bohr (1918), p. 21).
108. Bohr (1918), p. 20.

252



SCI. DAN. M. I THE STARK EFFECT IN THE BOHR-SOMMERFELD THEORY

Note that Bohr’s first line of defense is the same as Sommerfeld’s: 
the ambiguity does not affect the expression for the total energy. 
Also note that, while it is true that there are, e.g., infinitely many 
different polar coordinate systems or parabolic coordinate systems, 
these are still very special coordinates.“9 Bohr’s statement thus gives 
a misleading impression about the range of problems to which the 
method of separation of variables can be applied. Most important­
ly, however, Bohr, unlike Epstein and Sommerfeld, saw the non­
uniqueness of orbits as an asset rather than an embarrassment for 
the old quantum theory.

A few pages later, in a maddeningly dense passage, Bohr de­
scribes what happens to orbits when an external field is switched 
on. Below are a few intriguing clauses from this passage:

Consider now a periodic system in some stationary state ... and let us 
assume that an external field is slowly established . . . and that the 
motion at any moment during this process allows of a separation of 
variables in a certain set of coordinates . . . we must expect that the 
motion of a periodic system . . . under the establishment of the exter­
nal field cannot be determined by ordinary mechanics, but that the 
field will give rise to effects of the same kind as those which occur 
during a transition between two stationary states accompanied by 
emission or absorption of radiation. Consequently we shall expect 
that, during the establishment of the field, the system will in general adjust 
itselfin some unmechanical way until a stationary state is reached . . .no

This passage seems to suggest that, say, an electron in a hydrogen 
atom in an initially field-free region moving on one of the orbits 
found by imposing the quantum conditions in polar coordinates 
would, at the appearance of an arbitrarily small homogeneous elec­
tric field, immediately and stochastically jump to one of the orbits

109. In the parameter space of all physically reasonable Hamiltonian functions to 
which an actual electron might be subjected, the set of Hamiltonians amenable to 
separation in polar or parabolic coordinates - or indeed, any of the eleven “canoni­
cal” coordinate systems in which the Laplacian separates (Morse and Feshbach 
(1953), pp. 655-665) - occupy a set of measure zero.
no. Bohr (1918), p. 23 (emphasis in the original).
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“adapted” to the direction of the field at that moment, i.e., one of 
the orbits found by imposing the quantum conditions in parabolic 
coordinates. As soon as the direction of the field is changed, it 
would jump to another adapted orbit found by imposing the quan­
tum conditions in different parabolic coordinates. This picture, un­
attractive in and of itself, requires, as Bohr seems to acknowledge in 
the passage quoted above, that the external field experienced at any 
moment by the electron is such that there are coordinates in which 
the Hamilton-Jacobi equation for the system is separable. This re­
quirement cannot be met as soon as there is any inhomogeneity in 
the electric field in the space traversed by the orbit. Worse yet, the 
inclusion of relativistic effects removes the possibility of separation 
of variables even in the case of an exactly homogeneous and con­
stant external field. In short, what seems to emerge when we strip 
away Bohr’s obfuscating language is nothing but a rather bizarre 
proposal for the behavior of electrons in atoms. Had Bohr expressed 
himself more clearly, his proposal might actually have undermined 
rather than enhanced support for his theory! In the end, Bohr’s pro­
posal mainly serves to reinforce Epstein’s point that “the notion 
that a preferred direction introduced by an external field, no matter 
how small, should drastically alter the form and orientation of sta­
tionary orbits would seem to be unacceptable.”™

n nr I 6

1 0 1 0
2 0 2 0
2 1 1 V3/2
3 0 3 0
3 1 2 V5/3
3 2 1 2^2/3

Table 1: Angular momentum (/ times h~) and eccentricity (e) for low-lying 
orbits in polar coordinates.

hi. Epstein (1916b), p. 507.
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Table 2: Angular momentum (/ times h~) and eccentricity (e) for low-lying 
orbits in parabolic coordinates.

n rin I 6

1 0 0 1 1 0
2 0 0 2 2 0
2 1 0 1 V2 i/y2
2 0 1 1 Vz i/y2
3 0 0 3 3 0
3 1 1 1 5/1 + 8 sin2 (mJ) 2-/2 cos (7f<5)/3
3 1 0 2 ^6 i/ys
3 2 0 1 V3 5/2/3
3 0 1 2 ye l/yi
3 0 2 1 yi yys

112. See sec. 3 of Duncan and Janssen (2014) for a derivation of Eqs. (30)-(32) (the 
last one only for the special case that either or cr2 vanishes).

Tables 1 and 2 illustrate just how different the allowed orbits of the 
electron in a hydrogen atom in the absence of an external electric 
field are depending on whether the quantum conditions are im­
posed in polar or in parabolic coordinates. The first three columns 
in Table 1 and the first four columns in Table 2 give the quantum 
numbers - (nr,l.) and (n{, n,p nv), respectively - for orbits with prin­
cipal quantum number n =1,2, 3 (where n = nr + 1 = ns + + rQ. The
last two columns in both tables give the values for the angular mo­
mentum and the eccentricity for the orbits characterized by these 
quantum numbers. These entries are based on the following rela­
tions, which we will not derive here but just state."'2 The size / of the 
angular momentum in units of and the eccentricity e are related via

I = nVl — e2, e = -\/l — -^-7. (30)

V n-

We used the latter expression to find the numbers in the column for 
e in Table 1. To find the corresponding entries in parabolic coordi­
nates, we introduce the quantities and <r2: 112
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o~i = - y + %), a2 =+ %)• 1 J

113. Duncan and Janssen (2007).
114. Epstein (1916b), Schwarzschild (1916).
115. Schrödinger (1926), Epstein (1926).

The eccentricity can be written as a function of these quantities and 
a phase parameter <5, which can take on a continuum of values:

e = + <J2 + 2<ji<J2 cos (27f<5) . (32)

We used this expression to find the numbers in the column for e in 
Table 2. To obtain the values in the column for /, we substituted 
these values for e into the first of Eqs. (30).

Comparing Tables 1 and 2, we see that only the circular orbits 
(with nr = ns = = 0) are the same in polar and parabolic coordi­
nates. All other orbits are different.

The appearance of the phase 3 in Table 2 shows that, in many 
cases, the values of (?i*,  n,p nv) do not even pick out discrete orbits 
but rather continuous sets of orbits. Orbits were abandoned in the 
transition from the old quantum theory to matrix mechanics in 
1925, largely because of problems in dispersion theory.113 In hind­
sight, we can see that one of the most celebrated successes of the old 
quantum theory, the Stark effect, should have made proponents of 
the theory suspicious of the notion of well-defined electron orbits in 
atoms well before 1920.

3. The Stark effect in wave mechanics

The derivation of the formula for the Stark effect in wave mechanics 
shows a strong family resemblance to the derivation of Epstein and 
Schwarzschild in the old quantum theory.114 Independently of one 
another, Schrödinger and Epstein applied the new wave mechanics 
to the Stark effect.115 Schrodinger’s paper was published in Annalen 
der Physik on 13 July 1926. Epstein’s paper is signed 29 July 1926 and 
was published in Physical Reviewin October 1926. Epstein had moved
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to Pasadena in 1921. In his paper, Epstein cited Schrodinger’s first 
and second “communication” (Mitteilung) on wave mechanics as 
well as Schrödingers paper on the equivalence of wave and matrix 
mechanics (which appeared in May 1926), but not the third com­
munication.116 Presumably, the issue of 13 July 1926 of the Annalen 
had not reached Pasadena by 29 July 1926.

116. Epstein (1926), p. 695, note 1.
117. Epstein (1926), p. 695. Claim (2b), however, was based in part on a comparison 
of erroneous calculations with spurious data (cf. notes 98 and 129).
118. Epstein (1926), p. 695.

In the abstract of his paper, Epstein emphasized the advantages 
of the new theory of the Stark effect over the old one:

(1) Positions of lines practically coincide with those obtained in the writ­
er’s old theory which gave an excellent agreement with experiment.

(2) Intensity expressions are obtained in a simple closed form: (a) Com­
ponents which, in the old theory, had to be ruled out by a special 
postulate now drop out automatically, (b) The computed intensities 
of the remaining components check the observed within the limits of 
experimental error.117

In the introduction, he elaborated:

The positions of the lines turn out to be practically the same as in the 
writer’s old theory. The first order terms are identical with the old 
expressions, the second order terms [which we are ignoring in this 
paper (AD & MJ)] show a very slight difference. The main interest of 
the paper lies, therefore, in the intensity formulas, which are remark­
ably simple in their structure and agree with the observed values bet­
ter than Kramers’ intensity expressions derived from Bohr’s corre­
spondence principle.118

To bring out the close analogy between the calculations in the old 
and the new quantum theory, we sketch the derivation of the for-
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mula for the Stark effect in hydrogen in wave mechanics.119 As in the 
old quantum theory, the starting point is the Hamiltonian (13) in 
parabolic coordinates. Instead of the substitutions (15) of dS/d£ for 
p« etc., we now make the substitutions

ug.See, e.g., Condon and Shortley (1963), pp. 398-404, for a modern textbook treat­
ment that follows Schrödinger (1926) and Epstein (1926).
120. See sec. 6 of Duncan and Janssen (2014) for a more detailed exploration of the 
connection between the Schrödinger equation and the Hamilton-Jacobi equation.

to form the Hamilton operator H entering into the time-independ­
ent Schrödinger equation,

F/t) = ait). (34)

where i//(£ //, ?>) is the wave function in parabolic coordinates. Fol­
lowing the notation used in our calculation in the old quantum 
theory, we use aT to label the energy eigenvalues. With the substitu­
tions (33) the Hamiltonian (13) becomes the Hamilton operator

n- / 4 ( d cd\ 4 ( d d\ 192\
2;i V + ’I J + J + >7 ydr^dr]J + £77 difi2J

(35)

Inserting this expression into Eq. (34), dividing both sides by i// and 
multiplying by 2/z(£ + //) (using relations (14)), we arrive at:

(36)

Note the similarity between the Schrödinger equation (36) and the 
Hamilton-Jacobi equation (16) in the old quantum theory.180 Ham­
ilton-Jacobi theory played an important role in the development of 
wave mechanics. It was the embodiment of the optical-mechanical * 120 
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analogy that guided Schrodinger’s search for a new wave mechanics 
underlying ordinary particle mechanics the way wave optics under­
lies ray optics.181 Schrödinger’s account of the Stark effect shows 
that the connection between wave mechanics and Hamilton-Jacobi 
theory also enabled him to transfer important mathematical tech­
niques from the old quantum theory to his new theory.

121. Joas and Lehner (2009).

Eq. (36), like Eq. (16), is separable in parabolic coordinates. In 
the case of the Schrödinger equation, this means that its solution 
has the form

The wave function and the generating function S' are related via 
y = e's,h. Hence, if S' is the sum of three functions, each of which de­
pends on only one of the three coordinates £ //, and cp (see Eq. (17)), 
(//will be the product of three such functions:

=

Just as we could set Sv((p)= a3<p (see Eq. (22)), we can set
with a3 = n^h and nv = m. Upon substitution of -nry for cdy/dcp1 = 
d'liydcp' in Eq. (36), we are left with an equation that splits into a 
part depending only on £ and a part depending only on //. Both 
parts must therefore be constant. Denoting these constants by =F2a2 
as we did in the corresponding Eq. (19) in the old quantum theory, 
we arrive at equations of the form

d2^ . d2^ d^r ( .
+ + ( = + <■ M = <37’

The expressions in parentheses are functions of £, and //, respective­
ly, containing the separation constants aT, a2, a3, and the field 
strength 8.

As in the old quantum theory, we first solve these equations for 8 
= 0 and then to first (and second) order in 8. For our purposes, the 
first step, with 8 = 0, turns out to be the most interesting one, and 121 
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we will focus on that part of the calculation.188 We begin by study­
ing the behavior of t/o(£) and t//,z(//) at small and large rand //, respec­
tively. This leads us to write these functions in the form

122. See sec. 4 of Duncan and Janssen (forthcoming) for a more detailed version of 
this calculation.

= ^my2e-^2naf^, (38)

where f and g are as yet unknown functions. In the process we re­
placed aT by

h . , h2 na = with a = —
\/—2gai /ze-

anticipating that n will eventually be identified as the principal
quantum number. Inserting Eqs. (38) for t/o and t//,z into Eqs. (37), 
we find equations for f and g of the form:

= o, W'+ (---)y + (• • )rz = o.

The solution of these equations will be polynomials in £ and //, re­
spectively:

nn
f(£) = ^ak^ = (39)

fe=0 1=0

with recursion relations on their coefficients (of the form ak+l/ak = ... 
and bM/bI = ...). For the wave function to be square-integrable, the 
polynomials in Eq. (39) have to break off at some point, i.e., there 
must be values and n,z of k and / such that c,?t+1 = 0 and c„ij+1 = 0. 
This leads to the conditions:

0^2 nd n
2

0(2^0

2h2 '

Combining these two conditions, we find
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or, equivalently,

n = + n,; + \m\ + 1. (40)

Comparing this result in wave mechanics with the corresponding 
result (23) in the old quantum theory, we notice that the difference 
between the two results is the final term +1 in Eq. (40). This extra 
term obviates the need for a special condition to rule out |/w| = 0. 
Both Schrödinger and Epstein emphasized this point.183 Elaborating 
on point (2a) in his abstract (quoted above), Epstein commented:

123. Schrödinger (1926), p. 463; Epstein (1926), p. 708.
124. Epstein (1926), p. 708.
125. The WKB or WKBJ approximation is named after Gregor Wentzel (1926), Léon 
Brillouin (1926), and Kramers (1926), who developed it independently of one an­
other shortly after the formulation of wave mechanics, and Harold Jeffreys (1924), 
who had introduced it earlier in a different context.
126. Gutzwiller (1990), p. 211.
127. See sec. 6 of Duncan and Janssen (2014) for a more detailed discussion of how 

It will be remembered that the restriction for the azimuthal quantum 
number [|;w > 0] was an additional one, not following from the 
dynamical conditions. It was introduced by Bohr for the purpose of 
eliminating plane orbits, moving in which the electrons would sooner 
or later undergo a collusion [sic] with the nucleus. In our new theory 
an additional restriction is not necessary.123 124

In the so-called WKB approximation,125 conditions similar to the 
quantum conditions (11) of the Bohr-Sommerfeld theory emerge 
from the requirement that different parts of the approximate solu­
tions of the Schrödinger equation constructed according to the WKB 
method merge properly. In the regime of large quantum numbers, 
one finds conditions of the form f p,dcp =(jif + a)h in this way, where a 
is equal to | times an integer (now called the Maslov index126). In the 
analysis of the Stark effect in parabolic coordinates, a turns out to be 
equal to | and the quantum numbers m and n,z in the old quantum 
theory are replaced by ns + } and n,z +respectively. This explains the 
extra term 1 in Eq. (40) for the principal quantum number.127
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As we saw at the end of Section 2, experimentalists established 
very quickly that the values given by Schrödinger for the intensities 
of the Stark effect components of the Balmer lines agreed better 
with their data than those given by Kramers. Despite the notorious 
animosity between proponents of wave and matrix mechanics, 
Schrödinger, who had just published his paper on the equivalence 
of the two formalisms, borrowed freely from matrix mechanics to 
calculate intensities. As he explained at the beginning of the section 
on intensities in his paper:

According to Heisenberg, if q is a Cartesian coordinate, the square of 
the matrix element... should be a measure for the “transition proba­
bility from the rth to the r'th state,” more precisely speaking the inten­
sity of that part of the radiation connected to this transition that is 
polarized in the direction of q.128

the WKB approximation can be used to amend the quantum conditions of the old 
quantum theory.
128. Schrödinger (1926), p. 465.
129. As Gordon and Minkowski (1929) pointed out, the most serious mistake in Ep­
stein’s calculation (cf. note 98 above) was that he equated the intensity with the norm 
of this matrix element rather than with its square.

In modern Dirac notation, this matrix element would be written 
as129

(nr£ ,ri^,mr'\ q \nr̂  ,nrv,mr)

Neither Epstein nor Schrödinger seems to have realized that the 
new account of the Stark effect was superior to the old one in yet 
another respect. As we mentioned in the introduction, quantum me­
chanics replaces the embarrassing non-uniqueness of orbits in the 
old quantum theory (see Tables 1 and 2 at the end of Section 2.3) by 
a completely innocuous non-uniqueness of bases of eigenfunctions. 
Consider, for example, the three orbits for the lower level (/? = 2) in 
Figure 1, with the values (Oil), (002), and (101) for the quantum 
numbers (n*,  n,;, associated with the use of parabolic coordi­
nates in the old quantum theory. In wave mechanics, these three 
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levels do not correspond to orbits but to three (orthonormal) wave 
functions characterized by those same quantum numbers. All three 
are eigenfunctions (at least to first order in the electric field strength 
£) of the Hamiltonian (35) for the hydrogen atom in an external 
electric field. These wave functions can be written as linear combi­
nations of three (orthonormal) wave functions characterized by 
quantum numbers in polar coordinates. As long as there is no exter­
nal electric field (8 = 0), these wave functions are eigenfunctions of 
the Hamiltonian as well. However, as soon as the field is switched 
on (8 P 0), they no longer are; only linear combinations of these 
wave functions in polar coordinates that correspond to the eigen­
functions of the Hamiltonian in parabolic coordinates are. This is 
no problem at all. In the old quantum theory, we get a different set 
of allowed physical states (represented by orbits in a miniature solar 
system) depending on whether we use polar or parabolic coordi­
nates. In the new quantum theory, we get the same set of allowed 
physical states (now represented by wave functions or, more gener­
ally, by vectors or rays in Hilbert space) regardless of which coordi­
nates we use. We just have the freedom of writing any state as a lin­
ear combination of any orthonormal basis of states in the Hilbert 
space.13“

130. See sec. 5 of Duncan and Janssen (2014) for a more detailed discussion of how 
the non-uniqueness of orbits in the old quantum theory turns into the non-unique- 
ness of bases of eigenfunctions.
131. Sommerfeld (1919), p. 440.

4. Conclusion: Stark contrasts between the old and the 
new quantum theory

The explanation of the Stark effect by Epstein and Schwarzschild in 
1916 was a triumph for the old quantum theory. In Atombau und 
Spektrallinien, from which we already quoted a few passages in the 
introduction, Sommerfeld wrote that this explanation was in such 
complete agreement with the empirical data that “any doubt about 
the correctness and uniqueness of the solution is no longer 
possible.”130 131 “[T]he classical theory,” he pointed out, “failed com- 
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pletely in the case of the Stark effect. By contrast, the quantum the­
ory fully reproduces the observations in all their rich detail (includ­
ing recently the polarizations).”138 A few pages later, after covering 
the work of Epstein, Schwarzschild, and Kramers on the Stark 
effect, he wrote in the concluding paragraphs of his book:

132. Sommerfeld (1919), p. 440.
133. Sommerfeld (1919), pp. 457-458.

The frequencies, especially those of the electric splittings could be 
derived with extraordinary certainty and completeness from the prin­
ciples of Bohr’s theory of the hydrogen atom and of quantum emis­
sion. With a sensible extension of the theory, [the polarization] could 
also be explained in a way that hardly leaves any gaps. The ravine 
that originally seemed to open up between the quantum theory and 
the wave theory of spectral lines could therefore on essential points 
already be bridged. Not much is missing for it to be definitively filled 
in. In this sense, the theory of the Zeeman effect and especially that of 
the Stark effect belong to the most impressive achievements of our 
field and form a beautiful capstone on the edifice of atomic physics.132 133

As we showed in Section 2, however, even the Stark effect revealed 
some serious cracks in Sommerfeld’s edifice. To account for the 
effect in the old quantum theory, one had to make some arbitrary 
assumptions in addition to the Bohr-Sommerfeld quantum condi­
tions to rule out certain orbits. To calculate intensities of lines on 
the basis of Bohr’s correspondence principle, one had to make at 
least one more arbitrary assumption. It was not enough to stipulate 
that the intensity of a line of a given frequency is given by the square 
of the coefficient of the term in the Fourier expansion of the orbit 
with that frequency. One also had to decide whether to use the Fou­
rier expansion of the initial orbit, the final orbit, or some weighted 
average of both and everything in between. Moreover, contrary to 
the calculations of the frequencies of the various lines, the calcula­
tions of their intensities only gave qualitative agreement with the 
(admittedly also less secure) experimental data. Most worrisome of 
all, we saw that the actual orbits predicted by the old quantum the­
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ory depend on the coordinates chosen to impose the quantum con­
ditions (see Tables 1 and 2). Both Sommerfeld and Epstein clearly 
identified this problem but their response to it was little more than 
wishful thinking that the problem would somehow go away. Bohr 
made an unconvincing attempt to turn this weakness into a strength 
of the theory.

As we showed in Section 3, all these problems were solved in 
1926 when Schrödinger and Epstein explained the Stark effect on 
the basis of the new wave mechanics. The old explanation was cer­
tainly helpful as the mathematical techniques needed to solve the 
problem in the two theories are very similar, as we also saw in Sec­
tion 3. In particular, it suggested that the Schrödinger equation, 
like the Hamilton-Jacobi equation, would be separable in parabolic 
coordinates (cf. Eqs. (16)-(20) and Eqs. (36)-(37)). The new theory 
determines all allowed states and transitions without any additional 
assumptions. In particular, the principal quantum number picked 
up an extra term of +1 (see Eq. (40)), which obviated the need to 
rule out certain combinations of values of the three parabolic quan­
tum numbers. Wave mechanics also replaced the ambiguous guide­
lines based on the correspondence principle for calculating intensi­
ties by the straightforward and definite prescription that intensities 
are given by the squares of the matrix elements of position, leading 
to results in reasonable quantitative agreement with the experimen­
tal data. Finally, the embarrassing non-uniqueness of orbits in the 
old quantum theory was replaced by a completely innocuous non­
uniqueness of bases of eigenfunctions in wave mechanics.

The Stark effect is remembered to this day as one of the few ad­
mittedly qualified successes of the old quantum theory. We suspect 
that this is largely because after 1926 it became just one of many 
unqualified successes of the new quantum theory.
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